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Abstract—Visual surface defect detection is crucial for product 

quality control in the large-scale wood manufacturing industry. 

This study focuses on how to assist deep learning model in 
surviving in the challenges brought by complex texture 

backgrounds. A novel visual defect detection model, inter-layer 

information guidance feedback networks (I2GF-Net), is proposed 

in this paper. To be specific, a top-down feedback encoder (TDFE) 

is proposed to guide the attention of the low-level feature map, 

enabling it to focus on the defect regions by incorporating 

enhanced high-level semantic information. This significantly 

reduces false positives triggered by intense textures. Meanwhile, a 

semantic feature texture enhancement (SFTE) method is designed 

to compensate for high-level semantic features with fine-grained 

local information, thereby avoiding frequently missed detections 

resulted from multiple down-sampling in deep models. 

Furthermore, we provide an option of dual-round feature 

refinement (DRFR) to pursue a higher mAP in scenarios where 

sacrificing a certain amount of time is acceptable. Experimental 

results demonstrate the I2GF-Net outperforms 13 state-of-the-arts 

on two benchmark datasets (VSB-DET and NEU-DET), as well as 

our newly opened wood dataset (OULU-DET), which will be 

publicly available at http://www.ilove-cv.com/oulu-wood/. 

 
Index Terms—Visual surface defect detection, wood surface defect, 

complex texture backgrounds, inter-layer information guidance. 

 

I. INTRODUCTION 

OOD material, with its natural green merits, plays 

vital role in various aspects of daily life and 

infrastructures. Any surface defects suffering on 

wood materials reduce its aesthetics and mechanical properties, 

which directly affect the quality of the end products [1]. 

Automated visual inspection (AVI) instrument targeting on 

surfaces emerges as a fundamental assurance for wood 

manufacturing industry to promote production quality and 

outputs [2][3]. Wood, as a natural material, possesses its unique 

features [4]. Notably, textures such as intensive tree rings and 

various knots normally exist on the wood products like sawn  
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Fig. 1. Defect samples in complex wood texture backgrounds. 

 

timbers, planks, etc. These textures may be what consumers 

expect in terms of wood defect detection precisely. The 

challenging textures are clearly evident in Fig. 1, and they pose 

two adverse impacts on the AVI system:1) Frequent false 

positives. The intense textures, referring to the green dash box in 

Fig. 1(a), may be incorrectly identified as defects. While texture 

feature-based methods aim to detect regions that disrupt 

homomorphic properties, they are not specialized in 

distinguishing between defects and textures. 2) Inevitable missed 

detections. The subtle defects, referring to the orange dash box in 

Fig. 1(b), are often concealed within texture backgrounds, 

making them difficult to detect or even overlooked by the AVI 

system. While the multiple down-sampling scheme of deep 

learning methods tends to lost the fine-grained image details, so 

then tiny objects is easy to be ignored. Furthermore, as shown in 

red dash box in the Fig. 1(a), some defects suffer with blurring 

boundaries, which might result in many coarse bounding boxes 

at the stage of defect localization. 

Olli Silvén is with the Center for Machine Vision and Signal Analysis 

(CMVS), University of Oulu, 90014 Oulu, Finland. 
Li Liu is with the College of System Engineering, National University of 

Defense Technology, Changsha 410073, China. 

I2GF-Net: Inter-layer Information Guidance 

Feedback Networks for Wood Surface Defect 

Detection in Complex Texture Backgrounds 

W 

http://www.ilove-cv.com/oulu-wood/


2 

> I2GF-Net for Wood Surface Defect Detection in Complex Texture Backgrounds < 

 

In response to the aforementioned challenges, scholars are 

actively exploring ways to enhance the performance of detection 

models by effectively integrating low-level textural and high-

level semantic information. The goal is to achieve a more 

balanced performance that minimizes both false positives and 

missed detections, while improving the accuracy of correct 

detections. Notably, Shi et al. [5] proposed a novel analysis-by-

synthesis vision transformer (AbSViT) mainly based on top-

down vision attention, the significant improvement on visual 

segmentation and classification is attributed to the strong priors 

mined from high-level semantic information. On the contrary, 

Zhu et al. [6] designed a statistical texture learning network, a 

novel quantization and counting operator (QCO) is proposed to 

describe the texture information, so as to help capturing the 

invisible small targets. 
Building upon the aforementioned references, our 

investigation focused on the fundamental fact that deep learning 

models have the capability to extract complex and abstract 

feature representations, specifically semantic information, from 

wood surface images. This inherent capability strengthens 

detection networks, enabling them to effectively differentiate 

defects from intense texture backgrounds. Additionally, texture 

analysis can capture detailed features that may be overlooked by 

purely relying on semantic information. Following this roadmap, 

this paper proposes an innovative approach called Inter-Layer 

Information Guidance Feedback Networks (I2GF-Net) to address 

the challenges posed by complex wood texture backgrounds. The 

key idea is to leverage both semantic and texture information in 

an inter-layer manner, allowing for more comprehensive and 

robust defect detection. The contributions are as follows: 
First, for lower false positives, a top-down feedback encoder 

(TDFE) is proposed to guide the attention of the low-level 

features to focus on defect regions by enhancing defect semantics 

from high-level feature maps, which significantly reduces false 

positives triggered by intense textures. 

Second, for lower missed detections, a scheme of semantic 

feature texture enhancement (SFTE) is designed to compensate 

high-level semantic features with fine-grained information. The 

missed detection of subtle defects can be suppressed to a large 

extent. 

In addition, a framework of dual-round feature refinement 

(DRFR) is developed to refines defect features by reusing the 

backbone networks, so as to further enhance the defect 

localization precision. Under the DRFR framework, two versions 

of I2GF-Net have been provided: I2GF-Net-d with DRFR for 

higher detection accuracy (Mean Average Precision, mAP), and 

I2GF-Net-s without DRFR for higher detection speed (Frames 

Per Second, FPS). 

The subsequent sections are organized as follows: Section II 

reviews related research efforts. Section III delineates the 

framework of the proposed I2GF-Net. Section IV introduces 

extensive experiments and discussions. Finally, Section V 

presents the conclusions of this paper. 

II. RELATED WORKS 

A. Wood Defect Detection 

Machine vision has become increasingly popular for wood 

defect detection in recent years due to its cost-effectiveness, high 

speed, accuracy, and user-friendly nature. Initial works in this 

field focused on extracting features from wood images including 

color, texture, and gray-level co-occurrence matrix. Then, 

classifiers such as clustering, support vector machines, genetic 

algorithms, and neural networks have been used to differentiate 

between defects and normal regions. However, these methods are 

vulnerable to noise interference [7], and defect attribute 

extraction heavily relies on human expertise. 

Recently, CNN-based defect detection methods for wood 

images have been proposed. Hu et al. [8] used ResNet18 for 

wood image classification using deep learning. Ren et al. [9] 

introduced a classifier based on image patch features, followed 

by pixel prediction using the trained classifier. Jung et al. [10] 

utilized three different CNN architectures to detect defects in 

wood with surfaces featuring random textures. However, these 

methods exhibit low accuracy due to difficulties adapting to 

multi-scale variations in defects and distinguishing defects from 

normal background texture. 

Despite extensive CNN-based defect detection studies, the 

complex wood surface texture and various defect types create a 

challenging, high-dimensional state space for extracting effective 

features. 

B. Top-down Attention Mechanism 

Top-down attention exhibits unique neural features in brain 

regions that process sensory signals [11] and is critical for 

selecting information relevant to behavioral goals. Inspired by 

human visual processing, several studies have applied top-down 

attention to object detection [5]. Zhang et al. [12] proposed an 

adaptive asymmetric fusion module to exchange multi-scale 

contexts between lower and higher levels, enriching the decoding 

of semantic information and spatial details. Liu et al. [13] devised 

a U-shaped architecture that progressively refines higher-level 

features through bottom-up and top-down pooling modules, 

enhancing the role of pooling in CNN models for Salient Object 

Detection. 

In our study, we consider defects as anomalous regions in an 

image. In order to distinguish defects and intense textures, we 

explore a method to enhance defect semantics from the highest-

level feature maps to guide low-level feature maps in focusing on 

defect regions. 

C. Texture Enhancement 

Complex texture backgrounds on the surface of wood may 

obscure the features of subtle defects. Texture features efficiently 

capture the grayscale distribution and spatial organization of the 

image surface, proving beneficial for extracting features of subtle 

defects. Some studies have enriched defect representation by 

enhancing defect texture features [6]. Xu et al. [14] introduced 

sparse binary convolution filters for finer encoding of local 

textures. Fan et al. [15] referenced the texture structure of 

receptive fields in the human visual system and proposed a 

texture enhancement module. Liang et al. [16] employed wavelet 
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Fig. 2. Overall architecture of the proposed I2GF-Net. 

 

transformation to weaken texture information and balance 

grayscale distribution. 

However, as texture feature extraction is unsuitable for 

obtaining high-level image content, relying solely on texture can 

only partially reflect the intrinsic properties of objects. Therefore, 

we position texture features as a complement to high-level 

features. Inspired by [6] and Local Binary Patterns (LBP), we 

designed a texture enhancement method to compensate for high-

level features by extracting fine-grained local information from 

shallow feature maps. 

D. Feature Refinement 

Various Defects distributed in varied texture backgrounds may 

exhibit similarity with the background texture, leading to a 

blurred boundary of the defects. Advanced fine-feature extraction 

methods have been widely employed to enhance the model's 

capability in recognizing defect boundaries. Liu et al. [17] 

designed a composite backbone network, iteratively refining 

edge details of target features by connecting adjacent backbone 

networks and passing feature output from the previous network 

to the next sequentially. Wang et al. [18] enhanced the feature 

content by compressing it and weighted encoding. Zhu et al. [19] 

employed feature-guided decoders to progressively refine multi-

scale texture information, effectively focusing on blurry object 

boundaries. Wen et al. [20] introduced a feature-based domain 

unraveling and randomization framework, successfully 

segmenting cracks with ambiguous boundaries using multi-scale 

contextual features and cross-attention mechanisms. 

Given that our priority is accurate defect recognition rather 

than precise defect localization, we present this potentially 

computationally demanding feature refinement scheme as an 

optional solution, primarily applied in scenarios requiring higher 

precision. 

III. PROPOSED METHOD 

A. Architecture of I2GF-Net 

The structure of our proposed I2GF-Net is shown in Fig. 2. The 

design motivations are as follows: 

Firstly, for a backbone network comprising L layers, we 

designate the input image as 
3 H WX    and the output of each 

layer as i i iC H W

if
 

 , where 
iC  stands for the number of 

channels in the output of the i-th layer, 
iH  and 

iW  denote the 

spatial dimensions of the feature map, with 1, ,i L= . The 

feature extraction process of the backbone network operates layer 

by layer, with 
1i

f
+

 being equal to ( )i i
M f  for each layer output, 

where ( )i
M   denotes the feature extraction module for the i-th 

layer. Furthermore, with an increase in the number of layers, 
i

C  

also increases, usually following the relation 
1

2
i i

C C
+

=  . Due to 

the down-sampling process, the spatial dimensions of each layer 

output also change, typically resulting in 
1

/ /2
i i

H H
+

=  and 

1
/ /2

i i
W W

+
= . Considering the diverse morphologies of wood 

defects, we balance accuracy and computational cost by selecting 

ConvNext [21] as the backbone network for initial feature 

extraction. 

Secondly, we introduce the abnormal feature capture unit 

(AFCU) to capture the anomalous regions, which focuses on 

analyzing and perceiving the feature distribution and differences 

among dataset samples. Additionally, to account for the 

sensitivity of feature maps at different levels to targets of various 

scales, we introduce the information enhancement up-sampler 

(IEUS) to extract and transmit guidance information to different 

scale levels. AFCU and IEUS together constitute the top-down 
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feedback encoder (TDFE). 

Next, we introduce texture features to preserve the data's 

inherent structure and capture small yet crucial features. A 

texture enhancement branch is brought out at the shallow level, 

and a semantic feature texture enhancement (SFTE) method is 

designed to enhance defect texture features. 

Then, combine high-level semantic information with low-level 

texture information. The feature maps undergo refinement 

through the backbone network in the dual-round solution, while 

the single-round solution does not. Both solutions generate three 

feature maps at shallow, medium, and deep levels. 

Finally, the three feature maps are through 1×1 convolution to 

generate multiple anchor boxes. Subsequently, the CIOU loss 

between each anchor box and its corresponding ground truth is 

calculated. During the training process, the SGD function 

minimizes the loss function. In the detection stage, a non-

maximum suppression method filters the bounding boxes. 

B. Top-Down Feedback Encoder 

1) Abnormal Feature Capture Unit: At the feature extraction 

stage of the backbone network, the input image undergoes 

multilevel feature extraction to generate a high-level feature map 
L L LC H W

Lf R    containing rich semantic information. To 

accurately capture critical features, we introduce a learnable 

affinity graph A L LC H W

MA   to acquire statistical features of 

the image [22]. Typically, regions of the image that deviate from 

statistical features are considered potential anomaly features [23]. 

Therefore, we employ an attention mechanism to handle the 

affinity graph, enabling it to interact with every position in the 

wood image, thus precisely locating anomalous features. To 

address potential feature redundancy and mitigate overfitting 

issues related to large-weight tensors [24], we employ the basis 

matrix L AC C

AB   to create a reshaped version of the affinity 

graph. This reshaped version is then incorporated into the query 

for the attention computation to obtain top-level guidance 

features. 

 ( )( )1 2
ˆ ( ) ( )T

L A M L Lf Softmax B A f f =     (1) 

Where 1  and 2  are two different linear transformation 

matrices and ( )Softmax   is a normalization function. 

This unit provides critical statistical features for wood surface 

defect detection, enabling the model better to capture potential 

defect regions and attenuate intense texture regions. 

2) Information Enhancement Up-Sampler: Considering the 

sensitivity of different levels of feature maps to targets of various 

scales, we introduce an up-sampler to handle these feature maps. 

As show in Fig. 3, the guidance feature 1 1 1

1
i i iC H W

if
+ + + 

+  is 

compressed to 1 1i iC H W
f + + 

  by 1×1 convolution to reduce the 

computation, where 1 / /iC C r+
 = , and r represents the channel 

compression factor. Then, the deformable content encoding [25] 

of the compressed feature is computed. To better adapt to the 

diverse shapes of defects on wood surfaces. Subsequently, the 

2D size of the content encoding is expanded by the PixelShuffle  

 
Fig. 3. Information Enhancement Up-Sampler. 

 

method and normalized using Softmax to obtain the content 

reassembly kernel used to do up-sampling of the guidance feature. 

 ( ) ( ) ( )
( )

, ,i jd i d j j j j
j i

f W p p f m
+ +



 = −     (2) 

 ( )( )softmaxlW S f=  (3) 

Where ( ),d i
f  represents the content encoding of the i-th pixel in 

the d-th channel.
j denotes the learnable sampling offset 

component for the j-th pixel, and ( )jjm +  is the learnable 

feature modulation coefficient. ( )i  represents a convolution 

window of size 
c ck k  centered around the i-th pixel. 

c cC C k kW
   

  is the content encoding convolution kernel, 
C C

i jW p p
  −    denotes the convolution kernel parameters 

corresponding to the positional offset between the i-th and j-th 

pixels. ip  represents the 2D pixel coordinates. ( )S   denotes the 

PixelShuffle method, 1 1/4 2 2i iC H W

lW + +  
 . 

After up-sampling the input feature map with nearest neighbor 

interpolation, the receptive field space features are extracted by 

2D average pooling. Then, the feature map is unfolded by group 

convolution. Finally, the enhanced guidance information up-

sampled features are obtained by content reassembly, and a linear 

transformation matrix changes the number of channels of the 

features to match the dimension of the low-level feature map. 

 ( )( )( )1 1i if G Avg Up f+ +
 =  (4) 

 ( ) ( )1, ,
p p

i l i

n p m p

t W n m f n m+

=− =−

=    (5) 

Where ( )Up   denotes nearest neighbor interpolation, ( )Avg  is 

2D average pooling with a pooling window size of 5, ( )G 

denotes group convolution with a convolution kernel size of 1.

/ 2cp k=    , i i iC H W

in
 

 . 

By cascading this up-sampler, the guidance information can be 

transmitted to different scale levels, thereby providing attention 

guidance to feature maps at various levels to accurately detect 

defects on wood surfaces and reduce the false positive rate. 
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C. Semantic Feature Texture Enhancement 

Previous research has shown that histogram equalization [26] 

enhances image contrast by adjusting the grayscale distribution, 

thereby making defect regions more prominent. Additionally, 

Local Binary Pattern (LBP) [27] have been employed to capture 

minute textural variations in images, further improving the ability 

to identify defect regions. Motivated by these methods, we 

developed a Semantic Feature Texture Enhancement (SFTE) 

approach and introduced a branch at a shallow level to extract 

fine-grained local information. 

We introduced a quantization and counting operator (QCO) [6] 

for multiple-level quantization to characterize the feature 

distribution statistically. The input feature map undergoes global 

average pooling, and feature vectors are computed using cosine 

similarity, generating encoding map HWLRE   and statistics 

feature CLRD  . Where L denotes the quantization levels, and 

C represents the dimension of the statistical feature. These are 

expanded into a learnable graph to reconstruct each quantization 

level. 

For the reconstruction process, we use two memory units, 
C d

kM   and C d

vM  , implicitly considering the effects 

between all samples [28]. Attention maps of statistical features 

are inferred from dataset-level knowledge learned by 
kM . The 

input features are updated based on similarities in the attention 

mapping to obtain the reconstructed quantization level, yielding 

the contrast-enhanced feature. 

 ( )( )T

k vx Norm DM M E=    (6) 

Where ( )Norm   is the normalization function. 

Traditional LBP compares the pixel values around the center 

pixel in clockwise order and then generates the final LBP 

pattern by linear combination. When applied to the entire image, 

a texture map is formed. The formula for LBP is: 

 ( )
1

,

0

2
P

p

P R p c

p

LBP s g g
−

=

= −  (7) 

Where P represents the number of filters, which is usually set 

to 8 in traditional LBP, and ( )s   represents the Heaviside step 

function. 

We found that the computational process of traditional LBP 

has similarities with convolutional operations, so we attempt to 

provide an alternative to the traditional LBP formulation to 

further explore its potential in enhancing defect texture features. 

 ( ) ( )
( )

1

, ,
0

P

i j td i d j
t j j

y W p p x v
−

= 

 
 = −    

 
   (8) 

Where ( )   denotes a non-linear threshold operation, W 

denotes a fixed filter, x is the original input image, and tv  

denotes a learnable linear weight parameter. 

We define P fixed differential convolution filters distributed 

in clockwise order and P learnable weights. The contrast-

enhanced feature passes through these fixed filters to produce 

P difference maps, activated by a nonlinear function. We 

replace the non-differentiable Heaviside step function [29] in 

LBP with a differentiable activation function (Sigmoid) for 

backpropagation. The P learnable weights linearly combine the 

disparity maps thus obtaining a texture feature map. 

SFTE enhances the representation capability of texture 

features in the process of wood defect detection by introducing 

a shallow texture enhancement branch and compensating for 

high-level semantic features. This activation of minor defect 

characteristics reduces the omission rate of subtle defects on the 

wood surface. 

D. Dual-Round Feature Refinement 

We designed a framework of dual-round feature refinement 

(DRFR), which aims to fully leverage the texture and semantic 

information within images to achieve accurate detection and 

localization of surface defects in wood. 

Under the framework, the backbone network initially 

generates a set of initial feature sets  1 2 3 4 5, , , ,F f f f f f= . 

Subsequently, the SFTE processes shallow-layer features to 

extract texture features. Following this, the AFCU captures 

potential defect regions in the highest-level feature map 
5f , 

yielding the top-level guidance features. These guidance features 

are then further optimized through three iterations of the IEUS to 

enhance their adaptability and expressive capability, thus 

obtaining more accurate guidance information sets  2 3 4, ,T t t t= . 

Finally, a subset  2 3 4, ,F f f f =  of the feature set F is merged 

with the guidance information set T to form an image feature set 

containing guidance information. 

 ( )( ),i i in CBR Cat f t=  (9) 

Where ( )Cat   denotes the concatenation operation, and ( )CBR   

represents the convolution, BatchNorm, and ReLU activation. 

In dual-round solution, we reuse the backbone network for 

dual-round feature refinement. 
 1 1( )i i i iP M n P− −= +  (10) 

Where ( )iM   refers to the i-th feature extraction module and 

1in −
 represents the guidance feature from the preceding layer. 

In each feature extraction iteration, the correlation between 

each module and the guidance features from the previous layer 

ensures a continuous focus of the network on defect regions, 

thereby enhancing detection accuracy. 

During this iterative process, the initial input consists of 

texture-enhanced features extracted from shallow-layer feature 

maps. These features are combined element-wise with the 

corresponding guidance features to ensure that the resulting 

feature set encompasses both texture details and semantic 

information. 

 ( ) ( )2 2 2 2,n SFTE f CBR f t= +  (11) 

After the dual-round process, the final feature set 

 3 4 5, ,P P P P=  is generated, characterized by rich semantic 

information and intricate texture features, providing a more 

comprehensive and accurate input for subsequent defect 

detection. Finally, the feature set is input to the subsequent 

detect head to obtain the prediction result. 
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Consider that the dual-round solution requires a more 

significant amount of computation. We provide a single-round 

solution with the output of each layer. This alternative approach 

processes the output of the backbone network through a linear 

transformation matrix to reduce computational costs and enhance 

operational speed. 

 
1 1( )i i i iP n P − −= +   (12) 

Where i  is the linear transformation matrix and   is the 

down-sample module in the backbone network. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we provide a comprehensive description of the 

experimental setup, covering details about the experimental 

environment, the dataset used, and the evaluation metrics. 

Following this, we present and analyze the experimental results 

to validate the effectiveness of our proposed I2GF-Net. 

A. Dataset 

1) VSB-DET: We evaluated the performance of our study based 

on the publicly available wood surface image dataset [2] 

provided by the VSB-Technical University of Ostrava, referred 

to as VSB-DET. The dataset was developed through their 

hardware and software solution to acquire images on a conveyor 

belt in an industrial environment at a speed of 9.6 meters per 

second. The acquisition rate was 66 kHz, accompanied by 

constant and intense vibrations. The dataset comprises 20,275 

wood surface images, each sized at 2800×1024 pixels, 

encompassing various surface defects. Considering the 

continuous nature of environmental variations on the production 

line, we randomly sampled 2800 images from the original dataset 

to expedite the experimental process. These images were divided 

into a ratio of 7:3 for the training and testing sets and were 

subsequently utilized for model training and evaluation. To 

ensure the breadth and adequacy of the dataset, we retained the 

types of prevalent defects and did not include defects that were 

too rare. More detailed information on the distribution of defects 

can be found in Table I, including Live Knot (LK), Dead Knot 

(DK), Marrow (Ma), Resin (Re), Knot with crack (KwC), Knot 

missing (KM), Crack (Cr). 

2) OULU-DET: We further evaluated the results within the 

first publicly available wood defect database [30], referred to as 

OULU-DET. The dataset originates from the University of Oulu. 

It comprises 839 images of spruce wood captured using a 3200 

K controlled halogen lamp. Each image is in RGB color, with 8 

bits per channel, sized at 512×488 pixels, and the error due to 

lighting variations remains within 1%. The images in the dataset 

are annotated and segmented into rectangular regions, with each 

rectangle corresponding to an approximately 2.5 × 2.5 square 

centimeter area of the wood surface. Notably, the original dataset 

utilized images in ppm format, deviating from mainstream 

database standards, and the label information was presented in a 

slide-window manner with somewhat coarse defect coordinate 

positions, potentially impacting detection performance and 

limiting widespread usage. To address these issues, following 

confirmation from the original author, we converted the ppm 

format images to .jpg format and re-annotated the images in  

TABLE I 

DEFECT STATISTICS IN VSB-DET 

Defect Occurrences Defective Images Frequency/% 

LK 2943 1654 59.07 

DK 1642 1144 40.85 

Ma 161 144 5.14 

Re 486 372 13.28 

KC 317 260 9.28 

KM 65 64 2.28 

Cr 288 210 7.50 

TABLE II 

DEFECT STATISTICS IN OULU-DET 

Defect Occurrences Defective Images Frequency/% 

DrK 304 236 28.13 

SK 567 324 38.62 

EK 167 138 16.45 

KH 32 30 3.57 

HK 40 37 4.41 

LK 58 45 5.36 

Sp 235 137 16.32 

Wa 379 270 32.18 

CS 67 55 6.55 

DeK 24 20 14.89 

PASCAL VOC style, with each image accompanied by a .xml 

annotation file. The new labeling utilized a bounding box format 

better suited for defect detection. We also conducted data 

cleaning, rectified specific label errors, and divided the dataset 

into training. Testing sets with a ratio of 7:3. More detailed 

information on the distribution of defects can be found in Table 

II, including dry knot (DrK), sound knot (SK), encased knot (EK), 

knot hole (KH), horn knot (HK), leaf knot (LK), split (Sp), wane 

(Wa), core stripe (CS), decayed knot (DeK). 

3) NEU-DET: In addition to the wood dataset above, we 

included a steel surface defect dataset to evaluate our method's 

generalisation performance. NEU-DET [31] is a collection of 

surface defect images on steel strips, compiled and publicly 

shared by Northeastern University. This dataset comprises 1800 

defect images at a resolution of 200×200 pixels. All defects are 

categorised into six major classes: Crazing (Cr), Inclusion (In), 

Patches (Pa), Pitted Surface (PS), Rolled-in Scale (RS) and 

Scratches (Sc), each containing 300 images per defect class. 

Within all defect images, defect positions and types are annotated 

in the VOC format. We randomly partitioned the 1800 defect 

images into training and validation sets using a 7:3 split ratio for 

our experiments. 

B. Experimental Setup 

1) Implementation Details: The hyperparameters for I2GF-Net 

are set as follows. The optimizer used is the Stochastic Gradient 

Descent (SGD) algorithm with a momentum of 0.9. The initial 

learning rate is set to 0.0005, optimized using the LambdaLR 

method. Based on the differences in image sizes across different 

datasets, we set the network input size to 1280×512 for VSB-

DET, 640×640 for OULU-DET, and 224×224 for NEU-DET. 

For TDFE, we set 
AC =32 and 

ck =5. For STFE, we set L=128, 

d=128, and P=8. The hardware environment for experimentation 
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Fig. 4. Detection results of different algorithms on VSB-DET. 

 

comprises 1 Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz with 10 

cores, 2 GeForce RTX 3090 graphics cards, 32 GB of memory, 

and a software environment of LINUX64 Ubuntu 20.04.6 with 

the PyTorch 1.12.1 framework. 

2) Comparison Methods: The thirteen following methods are 

compared. 1) CenterNet [32], which transforms the object 

detection problem into a task of predicting object centers and 

sizes. 2) Faster-RCNN [33], which integrates a region proposal 

network to generate candidate regions and achieves remarkably 

high precision in detection. 3) RetinaNet [34], which introduces 

‘Focal Loss,’ a specialized loss function addressing class 

imbalance issues. 4) YOLOv5 [35], which features a more 

efficient network structure and incorporates diverse data 

augmentation techniques. 5) YOLOv7 [36], which introduces 

model re-parameterization into the network architecture and 

proposes a training method for auxiliary heads. 6) YOLOv8 [37], 

which performs object detection through unique dual-path 

prediction and closely connected convolutional networks. 7) 

DETR [38], which approaches object detection as a set prediction 

problem and presents a highly concise object detection pipeline. 

8) RT-DETR [39], which designs an efficient hybrid encoder and 

proposes an IoU-aware query selection mechanism. 9) PP-

YOLOE [40], which introduces an ET head aimed at speed and 

accuracy. 10) RTMDet [41], which balances the computational 

load of various model components and employs dynamic soft 

labels to optimize training strategies. SFTE-Net [42], which 

proposes a multi-stage approach based on a pooling attention 

mechanism and cross-scale shallow feature reinforcement. CCG-

YOLOv7 [43], which introduces a rapid supervised attention 

module to connect the backbone layers with the head layers, 

while simplifying the head layers. EAE-YOLOX [44], which 

introduces an efficient channel attention mechanism and adaptive 

spatial feature fusion mechanism while improving confidence 

loss and localization loss functions. 

C. Evaluation Metric  

We employ precision (P) and recall (R) as evaluation metrics 

to assess the model's accuracy in detecting wood defects. An 

excellent detection model should demonstrate both high recall 

and high precision. The F1-score serves as a measure of this 

criterion. Additionally, the mean average precision (mAP) 

provides an indication of the average recognition accuracy across 

all wood defect categories. 
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TABLE III 

DEFECT DETECTION RESULTS ON VSB-DET DATA 

Model mAP/% FPS 
AP/% 

F1-score P/% R/% 
LK DK Ma Re KC KM Cr 

CenterNet [32] 73.1 78.5 73.5 79.5 88.6 71.1 65.5 79.7 48.2 70.8 72.2 69.4 

Faster-RCNN [33] 75.3 31.5 75.6 81.0 90.2 72.4 70.1 86.1 51.5 73.9 73.7 74.1 

Retinanet [34] 73.0 48.9 73.6 79.7 86.5 72.2 68.5 83.7 46.9 70.2 68.4 72.1 

YOLOv5 [35] 73.4 92.4 73.0 76.1 88.9 74.3 70.2 80.0 51.2 72.3 73.5 71.1 

YOLOv7 [36] 74.1 103.2 74.5 79.1 90.2 73.4 66.9 77.0 57.5 73.2 73.8 72.6 

YOLOv8 [37] 74.6 114.5 72.8 81.7 90.6 73.3 69.6 80.6 53.5 73.6 73.6 73.6 

DETR [38] 72.4 33.5 71.7 73.7 87.5 73.1 68.4 79.3 53.2 71.4 71.7 71.1 

RT-DETR [39] 74.5 38.6 73.2 78.6 88.1 72.3 70.8 81.6 56.9 72.3 72.7 71.9 

PP-YOLOE [40] 72.4 108.7 74.1 79.0 86.0 69.6 67.5 81.0 49.5 71.5 71.0 72.0 

RTMDet [41] 72.6 96.3 74.3 78.6 87.5 69.9 68.2 81.4 48.6 71.8 71.6 72.0 

STFE-Net* [42] 76.2 80.4 76.1 79.4 91.3 74.9 72.5 81.8 57.4 74.6 75.9 73.4 

CCG-YOLOV7* [43] 74.9 94.2 72.4 79.2 89.7 71.8 71.9 80.3 59.3 73.8 74.4 73.2 

EAE-YOLOX* [44] 75.7 98.6 75.8 80.1 90.3 72.2 71.3 82.4 57.6 74.2 73.8 74.6 

I2GF-Net-s 76.5 83.1 76.5 79.6 91.4 74.2 72.4 81.6 58.7 75.1 77.5 72.8 

I2GF-Net-d 78.4 52.3 77.6 80.5 92.3 75.7 74.6 84.7 63.7 77.3 78.8 75.8 

Results with ‘*’ are re-implemented by authors in this paper, and others are implemented with the open source codes from the corresponding references. 

 

D. Analysis of Results  

1) VSB-DET: We compared our I2GF-Net with thirteen state-of-

the-art methods on the VSB-DET dataset, and the results are 

shown in Table III. It can be observed from the results that I2GF-

Net-d achieved the highest mAP of 78.4%. Additionally, the mAP 

is 3.1% higher than the best-performing Faster-RCNN among the 

general models. Some faster detection methods, such as YOLOv8, 

use a lightweight network structure design that reduces redundancy 

in the computation process, thus increasing the detection speed. 

Although I2GF-Net-d is less than half the speed of YOLOv8, it still 

meets real-time requirements. Additionally, our mAP outperforms 

YOLOv8 by 4.3%. We also evaluated our I2GF-Net-s, which is a 

faster single-round detection solution. While it sacrifices some 

accuracy for speed, I2GF-Net-s achieved a competitive mAP of 

76.5% compared to CCG-YOLOV7 and EAE-YOLOX, which are 

designed for wood defect detection. Compared to STFE-Net, 

which enhances statistical texture features, our method exhibits 

slightly higher precision and speed. The detection speed of I2GF-

Net-s is 83.1 FPS, representing a 30.8 FPS improvement over 

I2GF-Net-d. Our method focuses on enhancing defect information 

extraction through top-down information guidance and fine-

grained local detail supplementation, achieving optimal AP values 

for the majority of defect categories. As shown in Fig. 4, our 

method is visually compared with several well-performing 

methods. It can be seen that in the case of wood defects, Re is often 

hidden in the background texture, and Cr often appears to be very 

thin and may be overlooked in the down-sampling process. Our 

method proved to be effective in detecting these defects. Although 

the performance of our method may not be the best in detecting 

DK and KM, it is close to the best. Additionally, our F1-score is 

highest at 77.3, indicating very low false positives. This is 

attributed to our I2GF-Net guide the attention of the low-level 

feature map to focus on the defect regions through TDFE, 

significantly reducing false positives caused by intense textures, 

achieved the highest precision (P) of 78.8%. Subsequently, 

compensate high-level semantic features with fine-grained local 

information through SFTE, substantially reducing the risk of 

missing subtle defects, achieved the highest recall (R) of 75.8. 

2) OULU -DET: As shown in Table IV, although our method 

performed less effectively in the OULU-DET dataset compared to 

its performance in the VSB-DET dataset, I2GF-Net still achieved 

the best mAP of 63.6% among the other thirteen advanced methods, 

with I2GF-Net-s following closely at 61.7%. The OULU-DET 

dataset presents challenges due to its limited sample size of 839 

images, encompassing ten defect types, with a notably sparse 

quantity of Dek samples and very faint defect features in Sp. These 

factors contribute to the overall challenge all detection methods 

face in accurately identifying Dek and Sp. However, addressing 

these challenges, I2GF-Net employs a top-down information 

guidance mechanism to capture anomalous features and refine the 

edge details of wood defects through iterative feature extraction. 

This approach allows I2GF-Net to perform excellently in 

detecting the majority of defect types while, through texture 

enhancement techniques, elevating the detection performance of 

challenging Dek and Sp beyond other methods. Compared to 

defect detection algorithms CCG-YOLOV7 and EAE-YOLOX 

designed for wood surfaces, I2GF-Net-d exhibits a competitive 

improvement. Furthermore, both precision (P) and recall (R) 

surpass those of other detection algorithms, suggesting that our 

model exhibits lower false positives and missed detections 

compared to other methods. 

3) NEU-DET: As shown in Table V, I2GF-Net also exhibits 

outstanding detection performance in the NEU-DET dataset, 

demonstrating its potential for generalization. Specifically, 

compared to thirteen other state-of-the-art methods, our I2GF-Net-

d achieved the highest mAP of 83.9%, followed by I2GF-Net-s 

with a mAP of 81.6%. Compared to the most accurate detection 

algorithm YOLOv8 within the general model, I2GF-Net-d 

exhibited a notable improvement of 6.3% in mAP, while I2GF-Net-

s showed an increase of 4%. This enhancement primarily resulted 

from the significant improvement in detecting weak defects (Cr 

and Rs) by I2GF-Net. These weak defects share similarities with 

Ma and Re in wood defect datasets, displaying subtle features that 
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TABLE IV 

DEFECT DETECTION RESULTS ON OULU-DET DATA 

Model mAP/% 
AP/% 

F1-score P/% R/% 
DrK SK EK KH HK LK Sp Wa Cs DeK 

CenterNet [32] 54.4 78.3 70.0 51.1 75.0 60.5 46.3 24.9 44.0 58.2 35.7 57.3 56.8 57.8 

Faster-RCNN [33] 59.1 80.4 66.6 56.9 82.6 79.5 57.9 24.2 45.5 62.3 34.9 63.5 60.8 66.4 

Retinanet [34] 56.7 79.1 64.3 49.8 74.6 56.7 58.8 28.9 50.6 68.0 35.9 60.1 58.5 61.8 

YOLOv5 [35] 57.4 81.4 63.4 54.4 81.8 73.2 48.5 26.3 48.0 62.4 34.7 58.2 55.5 61.1 

YOLOv7 [36] 59.2 79.9 66.0 56.3 82.5 80.2 58.0 24.6 46.0 63.9 34.9 63.6 64.2 63.0 

YOLOv8 [37] 59.9 79.7 69.8 64.4 82.0 64.0 59.5 29.0 48.3 67.5 35.0 64.7 64.0 65.4 

DETR [38] 57.7 78.2 65.1 58.9 81.4 59.6 51.5 33.0 47.5 65.3 36.2 61.3 60.1 62.6 

RT-DETR [39] 58.4 78.4 64.0 58.5 84.4 63.7 55.1 31.6 45.7 66.9 35.8 62.4 63.4 61.4 

PP-YOLOE [40] 55.0 77.1 64.5 60.2 68.6 59.0 47.1 28.1 47.6 61.7 36.5 60.8 61.0 60.6 

RTMDet [41] 56.8 81.0 66.3 49.0 68.2 73.3 49.3 30.5 48.9 65.4 36.0 60.7 60.7 60.7 

STFE-Net* [42] 61.4 80.1 68.7 64.4 81.7 74.3 57.5 32.2 52.6 67.3 35.4 63.4 63.3 63.5 

CCG-YOLOV7* [43] 59.7 79.8 67.3 58.2 81.4 78.3 57.6 26.7 48.6 64.2 35.3 61.4 61.8 61.0 

EAE-YOLOX* [44] 60.2 80.0 69.4 63.6 81.3 69.8 57.2 32.3 48.3 64.8 35.8 62.8 62.5 63.1 

I2GF-Net-s 61.7 80.2 69.5 62.7 81.3 76.1 57.4 35.8 53.1 66.5 34.6 63.7 63.7 63.7 

I2GF-Net-d 63.6 81.9 70.3 66.2 82.1 75.8 59.3 38.7 56.3 68.3 36.8 66.9 66.0 67.8 

Results with ‘*’ are re-implemented by authors in this paper, and others are implemented with the open source codes from the corresponding references. 

TABLE V 

DEFECT DETECTION RESULTS ON NEU-DET DATA 

Model mAP/% 
AP/% 

F1-score P/% R/% 
Cr In Pa PS RS Sc 

CenterNet [32] 76.7 55.4 75.0 93.5 88.9 62.9 84.4 73.9 72.9 74.9 

Faster-RCNN [33] 79.6 47.3 84.2 94.9 85.3 70.4 95.3 75.5 76.0 75.0 

Retinanet [34] 67.6 48.8 76.1 95.3 83.7 71.6 30.2 51.3 53.9 49.0 

YOLOv5 [35] 77.1 42.5 85.2 95.3 84.4 61.7 93.2 74.3 73.3 75.3 

YOLOv7 [36] 77.9 46.5 85.1 96.3 82.5 63.2 93.7 74.8 76.3 73.3 

YOLOv8 [37] 77.6 45.3 83.6 94.2 84.2 68.0 90.1 74.7 73.6 75.9 

DETR [38] 71.3 30.7 80.6 92.4 74.1 56.7 93.4 64.7 64.3 65.1 

RT-DETR [39] 73.0 37.6 78.1 91.7 79.4 60.7 90.3 71.3 70.4 72.2 

PP-YOLOE [40] 74.9 41.7 80.2 92.5 83.7 59.4 91.7 72.8 75.6 70.2 

RTMDet [41] 73.4 39.8 83.4 89.4 84.7 52.3 90.5 71.6 72.4 70.8 

STFE-Net* [42] 82.2 58.5 85.7 95.4 88.6 72.3 92.8 79.3 81.1 77.6 

CCG-YOLOV7* [43] 78.9 55.2 83.6 92.4 83.9 68.1 90.4 76.4 76.1 76.7 

EAE-YOLOX* [44] 80.1 56.3 84.1 93.7 84.8 69.5 92.2 78.5 79.5 77.5 

I2GF-Net-s 81.6 56.9 84.4 96.1 85.7 73.7 93 79.2 80.3 78.1 

I2GF-Net-d 83.9 60.7 86.7 95.3 89.3 77.8 93.5 80.7 81.3 80.1 

Results with ‘*’ are re-implemented by authors in this paper, and others are implemented with the open source codes from the corresponding references 

 

TABLE VI 

ABLATION STUDY OF DIFFERENT PARTS 
ConvNeXt TDFE SFTE DRFR Params/M GFLOPs mAP/% 

√    35.7 73.5 70.2 

√ √   37.6 83.4 73.7 

√ √ √  38.5 86.2 76.5 

√ √ √ √ 38.4 145.8 78.4 

are challenging for conventional detection methods to discern. 

I2GF-Net effectively amplifies the representation of weak defects 

by utilizing SFTE to extract fine-grained local information from 

the shallow branch, thereby enhancing the accuracy of detecting 

subtle defects. Compared to the defect detection algorithm STFE-

Net designed specifically for metal surfaces, I2GF-Net-s 

demonstrated similar effectiveness, while I2GF-Net-d showed an 

increase of 2.2% in mAP, with precision (P) increasing by 0.2% 

and recall (R) by 2.5%. This is attributed to I2GF-Net-d refining 

defect features through DRFR, thereby enhancing defect detection 

accuracy. 

E. Ablation Study 

In this section, we take the ConvNext backbone network as the 

baseline and conduct ablation experiments on the VSB-DET 

dataset to assess the effectiveness of each module in the proposed 

I2GF-Net model. The experimental results are presented in Table 

VI. 

1) Baseline Network: The Top-Down Feedback Encoder we 

designed shares a similar concept with commonly used feature 

fusion methods in current state-of-the-art approaches, such as FPN 

and PAFPN. To systematically analyze the impact of our 

proposed method on the detection model, we removed the feature 

fusion module from our baseline network, detecting wood defects 

solely through the ConvNext backbone network's output at three 

layers 543 f,f,f . After removing all the modules, the detection 
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performance significantly lagged behind ten advanced methods, 

with a mAP of only 70.2%. 

2) Effect of Top-Down Feedback Encoder: As shown in Table 

VI, the introduction of TDFE has led to an improvement in the 

performance of the baseline model, with the mAP increasing from 

70.2% to 73.7%, a gain of 3.5%. To visually demonstrate the 

guiding role of TDFE on low-level feature maps, Fig. 5 illustrates 

the input image feature map extracted by the backbone network, 

the guidance information generated by TDFE, and the combined 

effect of guidance information and feature map. Specifically, 

highlighted regions in the feature map represent extracted features, 

with brighter colors (yellow) indicating more prominent features. 

As shown in Fig. 5(b), the features extracted by the backbone 

network do not effectively distinguish between defects and intense 

textures. In Fig. 5(c), the guidance information obtained through 

TDFE effectively highlights the defect areas and almost does not 

activate the intense texture region on the left. This indicates that 

TDFE, leveraging high-level semantic information, can robustly 

differentiate between defects and intense textures. Fig. 5(d) shows 

that the fused guidance information has a specific inhibitory effect 

on complex texture backgrounds and activates the defect areas. 

These results demonstrate that TDFE can activate defect regions in 

the feature map, thereby avoiding false positives caused by intense 

textures. 

3) Effect of Semantic Feature Texture Enhancement: Analyzing 

the experimental results, we observed that the multiple down-

sampling processes led to the loss of local detailed information in 

high-level semantic features, making it challenging for TDFE to 

activate some subtle defects effectively. As shown in Fig. 6(b), this 

specific defect has relatively low contrast compared to other 

defects. It is concealed in the texture backgrounds and cannot be 

activated by the guidance information (Fig. 6(e)), resulting in a 

missed detection. To address this issue, we introduced SFTE. This 

method extracts fine-grained local information from a shallow 

feature map (Fig. 6(d)). It integrates it with the activated feature 

map, thereby compensating for high-level semantic information. 

Consequently, defects that were initially missed due to activation 

loss are successfully detected (Fig. 6(f)). With the inclusion of 

SFTE, the detection performance further improved, with the mAP 

increasing from 73.7% to 76.5%, representing a 2.8% 

enhancement. 

4) Effect of Dual-Round Feature Refinement: With the 

introduction of DRFR, we achieved more precise localization of 

defect boundaries. This dual-round feature refinement solution 

integrates high-level semantic information with low-level texture 

information, gradually enhancing the expressive power of defect 

features and aiding in the accurate localization of defect boundaries. 

As shown in Fig. 7(d), TDFE activates a relatively large area of 

defect regions, resulting in a broader defect localization range. 

DRFR refines the defect boundaries, bringing the detection results 

closer to the edges of the defects (Fig. 7(e)). This refinement 

improves the accuracy of defect localization, enhancing the 

detection performance of I2GF-Net, with the mAP increasing from 

76.5% to 78.4%, representing a 1.9% improvement. It is worth 

noting that while DRFR avoids a significant increase in overall 

parameters, it must be acknowledged that DRFR has an impact on 

Fig. 5. The feature map illustrates the effect of the TDFE. (a) Input 

image. (b) Features of the baseline model. (c) Guidance 

information. (d) Detection results. 

 

Fig. 6. The feature map illustrates the effect of the TDFE and SFTE. 

(a) Input image. (b) Features of the baseline model. (c) Texture-

enhanced results. (d) Missed detection in TFED. (e) Successful 

detection of subtle defects through SFTE. 

 

Fig. 7. The feature map illustrates the effect of the TDFE, SFTE, 

and DRFR. (a) Input image. (b) Features of the baseline model. (c) 

TDFE activates defect areas. (d) Detection results after texture 

enhancement with SFTE. (e) Detection results after refining. 



11 

> I2GF-Net for Wood Surface Defect Detection in Complex Texture Backgrounds < 

 

computational resources, reflected in the model's GFLOPs 

increasing from 86.2 to 145.8. 

F. Analysis of Illumination Effects 

In real-world industrial environments, fluctuations in brightness 

are commonplace. Factors such as glare can arise at specific 

detection points, potentially hindering the detection process. To 

investigate the robustness of our method under varying lighting 

conditions, we present several wood surface images affected by 

different illumination settings, along with the corresponding 

feature maps generated by our detection model. 

As shown in Fig. 8(a)-(f), our results demonstrate that even in 

challenging lighting scenarios, such as the presence of bright spots 

near defects (Fig. 8(a)-(b)), light spots resembling defect shapes 

(Fig. 8(c)), direct light shining onto the defect. (Fig. 8(d)), and large 

bright areas (Fig. 8(e)-(f)), our method reliably detects surface 

defects without significant sensitivity to illumination conditions. 

Through analysis of the feature maps produced by inputting these 

images into the I2GF-Net (Fig. 8(g)-(l)), we observe that while 

lighting affects the visual appearance of the original images, the 

guidance provided by the top-down feedback encoder (TDFE) on 

the low-level feature maps enables the model to focus attention on 

defect regions, thus mitigating interference from visually 

prominent illuminated areas on the detection process. 

Consequently, our model demonstrates a certain degree of 

robustness to illumination conditions. We attribute this resilience 

to the correlation between high brightness and intense textures, 

which both represent visually prominent areas but do not 

necessarily indicate actual defects. 

G. Future Works 

Although our network performs well, it still needs to be 

immune to performance degradation due to small data samples. 

In VSB-DET, the mAP of I2GF-Net is 78.4%, but in the more 

diverse and sample-limited OULU-DET, it drops to 63.6%. 

Besides enhancing the feature extraction capabilities of the model, 

the introduction of Few-Shot Learning could be a valuable 

approach. Annotate the most informative samples to maximize 

model performance under limited labeling conditions. 

Additionally, while DRFR does not add a substantial parameter 

overhead, it involves many floating-point operations. The data in 

TABLE VI indicates a sharp increase in GFLOPs from 86.2 to 

145.8 with the inclusion of DRFR. While this improves detection 

performance, the computational cost remains considerable. 

Therefore, exploring a dynamic detection architecture seems a 

promising avenue. By analyzing the difficulty of defect detection 

in current images, adaptive triggering of whether to engage in 

second-level feature extraction could significantly enhance the 

average detection speed while ensuring detection effectiveness, 

which will be reflected in our further work. 

V. CONCLUSION 

This paper addresses the tricky challenges faced by 

Automated Visual Inspection (AVI) systems in the wood 

manufacturing industry, specifically in detecting defects in 

complex wood texture backgrounds. We propose a solution 

called Inter-Layer Information Guidance Feedback Networks  

 
Fig. 8. Illustration of detection results in varied lighting conditions. 

(a) and (b) Bright spots near defects. (c) Light spots resembling 

defect shapes. (d) Direct light shining onto the defect. (e) and (f) 

Large bright areas in the images. (g)-(l) Feature maps. 

 

(I2GF-Net) that utilizes both semantic and texture information 

in an inter-layer manner. The I2GF-Net introduces a top-down  

feedback encoder (TDFE) that effectively reduces false 

positives by guiding low-level features to focus on defect 

regions through enhanced semantics from high-level feature 

maps. Additionally, we employ a semantic feature texture 

enhancement (SFTE) scheme that compensates high-level 

semantic features with fine-grained information, significantly 

reducing missed detections of subtle defects. To further refine 

defect features and enhance localization precision, we propose 

the dual-round feature refinement (DRFR) framework. 

Experimental results demonstrate that the dual-round solution 

(I2GF-Net-d) with DRFR outperforms thirteen state-of-the-art 

methods, achieving fewer false positives, fewer missed 

detections, and more precise defect localization. On the other 

hand, the single-round solution without DRFR (I2GF-Net-s) is 

faster and demonstrates acceptable detection performance. 

Specifically, I2GF-Net-d achieved competitive mAP values of 

78.4%, 63.6%, and 83.9% on VSB-DET, OULU-DET, and 

NEU-DET, respectively. I2GF-Net-s achieved mAP values of 

76.3%, 61.7%, and 81.6% on the three datasets. The detection 

speeds were measured at 83.1 FPS for the single-round and 52.3 

FPS for the dual-round. 
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